

(NASA-CR-128295) TRANSPORT OF SOLAR FLARE PROTONS: COMPARISON OF A NEW ANALYTIC MODEL WITH SPACECRAFT MEASUREMENTS J.E. Lupton, et al (California Inst. of Tech.)
Jul. 1971 7 p CSCL 03B G3/29

N72-32777

Unclas 16332

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

TRANSPORT OF SOLAR FLARE PROTONS COMPARISON OF A NEW ANALYTIC MODEL WITH SPACECRAFT MEASUREMENTS

J. E. Lupton and E. C. Stone

California Institute of Technology

Pasadena, California 91109

1

July 1971

SRL 71-3

FLUID FORCES AND MOMENTS ON FLAT PLATES

1. NOTATION AND UNITS

Three coherent systems of units are given below. SIBritish Ìt ft distance between two plates in series span of plate ft ft normal force coefficient in uniform flow, $N/\frac{1}{2}\rho V_m^2 S$ C_N ft ft chord of plate ft distance from datum in shear flow (Section 3.6) ft k_1, k_2 correction factors for effect of turbulence (page 3) longitudinal integral scale of turbulence* in L_{x} ft ft free stream 1bf ŧΝ **pd1 Ν normal force on plate constant defining velocity profile in shear flow (Section 3.6) Reynolds number, $V_{\rm m}c/\nu$ Re m^2 ft² ft² S area of plate ft² ft² m^2 S_f open area of perforated plate ft/s ft/s m/s velocity ft/s average free-stream velocity in uniform flow m/s ft/s V_{eff} effective average velocity in shear flow (Section 3.6) m/s ft/s ft/s root mean square value of longitudinal component of velocity fluctuations* due to turbulence in free stream m/s ft/s ft/s distance along centre line of centre of pressure behind leading edge of plate ft ft angle of incidence between plate and free α degrees degrees degrees m^2/s ft²/s ft^2/s free-stream kinematic viscosity ## lb/ft3 ***slug/ft3 kg/m³ free-stream density

Τ.

^{*} For explanations of this term see ESD Item No.70013 or Reference 2. Some typical values are given in Table I.

 $[\]dagger$ 1N = 1 newton = 102.0 x 10⁻³ kgf.

^{** 1} pdl = 31.08×10^{-3} lbf.

^{††} Kinematic viscosity = dynamic viscosity/density.

^{*** 1} slug = 32.17 lb.

TRANSPORT OF SOLAR FLARE PROTONS - COMPARISON OF A NEW ANALYTIC MODEL WITH SPACECRAFT MEASUREMENTS

J. E. Lupton and E. C. Stone

California Institute of Technology, Pasadena, California, U.S.A., 91109

An analytic solution has now been obtained to the complete Fokker-Planck equation including the effects of convection, interplanetary deceleration and acceleration, corotation, and anisotropic diffusion with κ_{\perp} constant and with $\kappa_{\perp} \propto r^2$. With the boundary of the diffusing region at 2.3 AU, a solar wind velocity of 400 km sec⁻¹, $\kappa_{\parallel} \sim 7 \times 10^{20}$ cm² sec⁻¹, and impulsive injection on the line of force connecting to the earth, the solution yields a time to maximum for the particle flux of ~ 10 h and an exponential decay time of ~ 25 h. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment on 0GO-6. Detailed comparisons of the calculated time dependence of the fluxes with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that κ_{\parallel} = constant is a better representation of conditions inside 1 AU than is $\kappa_{\parallel} \propto r$.

1. Introduction. The propagation of energetic solar flare particles through interplanetary space has been studied both theoretically and experimentally for a number of years. Although Parker (1965) had included a term for adiabatic deceleration in his general formulation of particle propagation, analytical descriptions of solar flare particle propagation only recently have included adiabatic effects (Fisk and Axford, 1968; Forman, 1970; Forman, 1971).

Experimentally, the first evidence for energy-change processes in interplanetary space was reported by Murray, et al (1971) using data from the Caltech Solar and Galactic Cosmic Ray Experiment on OGO-6 (Althouse, et al, 1967). Since that report, additional flare events have been studied and compared with the above analytic descriptions of particle propagation. As expected, the predicted flux risetime was too slow or the predicted time dependence of the decay was other than the observed exponential dependence. Therefore, the following analytical solution for particle propagation was derived.

2. The New Solution. The Fokker-Planck equation, which describes the propagation of cosmic ray particles in interplanetary space, can be written:

$$\frac{\partial n}{\partial t} + \stackrel{\rightarrow}{\nabla} \cdot \left\{ \stackrel{\leftarrow}{V} \left[n - \frac{1}{3} \frac{\partial}{\partial T} (\alpha T n) \right] - \stackrel{\rightarrow}{\underline{\kappa}} \cdot \nabla n \right\} = - \frac{V}{3} \frac{\partial}{\partial r} \frac{\partial}{\partial T} (\alpha T n)$$
 (1)

where n is the particle density, V the solar wind velocity, T the particle kinetic energy, $\alpha = (T+2\text{ moc}^2)$ / $(T+\text{moc}^2)$ and $\underline{\kappa}$ is the diffusion tensor. If the solar wind velocity V is assumed to be independent of the spatial parameters, the equation then reduces to:

$$\frac{\partial n}{\partial t} + \overrightarrow{v} \cdot (nV) - \overrightarrow{v} \cdot (\underline{\kappa} \cdot \nabla n) = \frac{2V}{3r} \frac{\partial}{\partial T} (\alpha T n)$$
 (2)

The right hand side, which treats the adiabatic deceleration caused by the solar wind expansion, can be generalized to include the effects of any energy change process which can be characterized by a time constant $\tau_E(r)$ r. The equation then becomes:

$$\frac{\partial n}{\partial t} + \stackrel{\rightarrow}{\nabla} \cdot (n \stackrel{\rightarrow}{V}) - \stackrel{\rightarrow}{\nabla} \cdot (\underline{\kappa} \cdot \nabla n) = \frac{1}{\tau_o r} \frac{\partial}{\partial T} (Tn)$$
 (3)

where $\tau_E(r)$ = τ_C r. This includes the effects of anisotropic diffusion, convection, and energy change. Note that adiabatic deceleration is a special case of Eq. 3 with $\tau_E(r)$ = 3r/4V and $\alpha(T)$ = 2.

A solution to Eq. 3 has been found which describes solar flare particle transport, using the following simplifying assumptions:

- 1. The particle density n depends only on radial distance r, azimuthal angle θ , time t, and particle kinetic energy T.
- 2. The energy T is not treated as an independent variable.
- 3. The solar wind velocity V is radial and independent of r, θ , and t.
- 4. The density is a power law in kinetic energy $n(r,\theta,t,T) = n_0(r,\theta,t)T^{-\gamma}$.
- 5. The particles are impulsively injected at $r=r_s$ at time t=0.
- 6. The density n must remain finite as $r \rightarrow 0$ (this is a substitute for a more realistic but more complicated boundary condition specified at $r=r_s$).
- 7. A perfectly absorbing boundary exists at r=L so that $n(L,\theta,t,T) = 0$.
- 8. The diffusion tensor $\underline{\kappa}$, which is independent of T, is defined by $\kappa_{\perp} = \kappa_{1}r^{2}$ and $\kappa_{\parallel} = \kappa = \text{constant}$.

As demonstrated previously by Burlaga (1967) and Forman (1971), when κ_{\perp} is assumed to vary as r^2 , the equation can be separated as follows:

$$n(r,\theta,t,T) = Q(\theta,t)R(r,t)T^{-\gamma}$$
(4)

For δ -function injection at θ = 0, the azimuthal part of the solution can be expanded as (Burlaga, 1967)

$$Q(\theta,t) = \sum_{\ell} \exp\left[-\kappa_1 \ell(\ell+1)t\right] (2\ell+1) P_{\ell}(\cos \theta)$$
 (5)

The equation for the radial part of the solution becomes

$$\frac{\partial R}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \left[\kappa \frac{\partial R}{\partial r} - VR \right] + \frac{1}{\tau_0 r} \frac{\partial}{\partial T} (TR)$$
 (6)

where the terms relating to diffusion, convection, and energy change are still clearly evident.

The new result presented here involves the following eigenvalue expansion for the solution to Equation 6:

$$R(r,t) = A \frac{\exp\left(V(r-r_s)/2\kappa\right)}{rr_s} \sum_{n=1}^{\infty} \frac{F_0\left(\beta/2\alpha_n^{\frac{1}{2}},\alpha_n^{\frac{1}{2}}r_s\right) F_0\left(\beta/2\alpha_n^{\frac{1}{2}},\alpha_n^{\frac{1}{2}}r\right)}{N_n} e^{-t/\tau_n}$$
(7)

where Fo(n,x) is the regular Coulomb wave function (Abramowitz and Stegun, 1964), and the α_n are defined by the eigenvalue equation Fo($\beta/2\alpha_n^{\gamma_2}$, $\alpha_n^{\gamma_2}$ L) = 0. The other parameters are defined as follows:

$$\beta = V(2C-1)/\kappa \tag{8}$$

$$C = 1 + (\gamma - 1)/2V\tau_0$$
 (9)

$$\tau_{n} = 4\kappa/(4\kappa^{2}\alpha_{n} + V^{2}) \tag{10}$$

$$N_{n} = \int_{0}^{L} \left[Fo(\beta/2\alpha_{n}^{\frac{1}{2}}, \alpha_{n}^{\frac{1}{2}} x) \right]^{2} dx$$
 (11)

The constant A is an arbitrary normalization determined by the number of particles injected. In the limit as $V \rightarrow 0$, this solution reduces to

$$R(r,t) = \frac{2A}{rr_sL} \sum_{n=1}^{\infty} sin\left(\frac{n\pi r_s}{L}\right) sin\left(\frac{n\pi r}{L}\right) exp\left(-\frac{n^2\pi^2\kappa t}{L^2}\right)$$
 (12)

which is identical to the ADB solution obtained by Burlaga (1967).

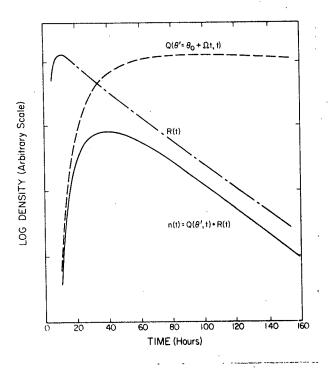
3. The Behavior of the Solution. Figure 1 shows the time profile of the solution at r=1 AU for typical values of the parameters. The total solution n(t) is the product of the radial part R(t) and the azimuthal part $Q(\theta',t)$, with the transformation $\theta'=\theta_0+\Omega$ t included to describe the effects of corotation. In this example θ_0 =-100°, which corresponds to a flare position of $\sim\!\!55^\circ$ E solar longitude. Figure 1 clearly demonstrates that the radial part of the solution yields rise times of $\sim\!\!10$ h and decay time constants of $\sim\!\!25$ h using a reasonable value for κ_H .

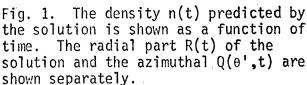
It can be seen from Equation 7 that at large times the first term in the expansion dominates and the time profile decays exponentially with $\tau_{DEC} = \tau_1$. This decay time constant is a function of the solar wind velocity V, the diffusion coefficient $\kappa_{\rm H}$, the outer boundary position L, and the energy-change parameter C. As expected, $\tau_{DEC} \simeq 1/\kappa_{\rm H}$ for large values of $\kappa_{\rm H}$ as the solution approaches Burlaga's model.

4. <u>Comparison with Spacecraft Measurements</u>. A preliminary comparison of the new solution has been made with actual measurements of solar flare particle time profiles. Although we have not yet optimized the values of all the parameters

Scale)

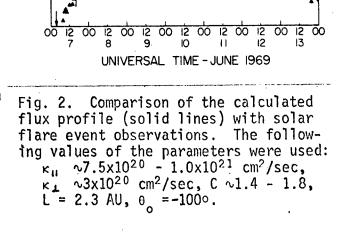
LOG PROTON FLUX (Arbitrary





involved, reasonable estimates have been made, and the resulting fits to the actual data are shown in Figures 2 and 3.

The 7 June 1969 event, shown in Figure 2, has a time-to-maximum of ~ 40 h, due to the $\sim 100^\circ$ distance in solar longitude between the flare and the direct-connected field line. Consequently, the rise of the event is largely



7 JUNE 1969 EVENT

The 2 November 1969 event, which occurred at 90° W solar longitude, is separated by only $\sim 35^{\circ}$ from the direct-connected field line and therefore has a much more rapid rise. Figure 3 demonstrates that reasonable fits can be achieved using L = 2.3 AU for energies from 1 to 70 MeV. It should be emphasized that for this November event the radial part of the solution alone determines the principal features of both the rise and decay, and that this event thus provides a critical test for the solution presented here.

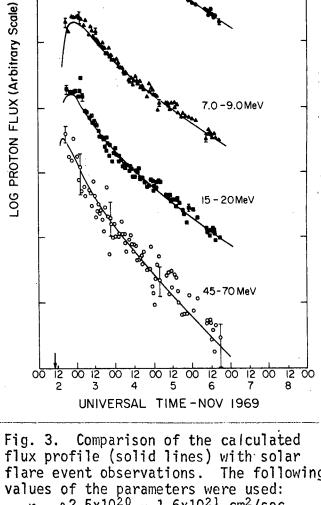
determined by the time profile of the Q(0',t) function while the decay phase is defined by the radial function R(t) (see Figure 1). The model approximates the observed profiles quite well using L = 2.3 AU and values of $\kappa_{\rm H} \sim 8 \times 10^{20}$ cm²/sec.

Conclusion. The new work presented here consists of re-solving the differential equation for the radial part of the particle propagation, using κ_{II} = constant, and including the effects of convection and energy change that are known to be important at low energies. In every other respect the assumptions made are the same as those used by Burlaga and Forman. Although the detailed dependence of the solution on all of the parameters has not been completely investigated, the preliminary results reported here show that the solution can reproduce both the rise and decay phases of actual flare. data quite well.

It has already been shown that a solution with κ_{II} ∝r describes the decay profile quite well, but predicts a rise which is longer than the 5 - 15 hours frequently observed (Forman, 1971). The rise profile is very sensitive to the value of κ_{μ} near the sun, since diffusion is the principal mode of particle transport early in a flare event. Since the present solution describes both the rise and decay phase of a flare event, there is an indication that the actual behavior of κ_0 inside 1 AU is better approximated by κ_{ii} = constant than by κ₁₁ α r.

. This solution also includes the effects of adiabatic deceleration, convection, and a non-adiabatic energy-change process, suggesting that further comparisons with data may provide a more thorough evaluation of interplanetary acceleration and deceleration processes.

Acknowledgments. We are grateful to R. E. Vogt who has been intimately



2 NOV 1969 EVENT

1.17 - 1.27 MeV

flare event observations. The following $\kappa_{\rm H}$ $\sim 2.5 \times 10^{20}$ - 1.6×10^{21} cm²/sec κ_{\perp} $\sim 1.5 \times 10^{20}$ - 1.4×10^{21} cm²/sec, $C \sim 1.1$, L = 2.3AU, $\theta_0 = +35^\circ$.

involved with the OGO-6 experiment. We also appreciate useful discussions with J. R. Jokipii and S. S. Murray. This work was supported in part by the National Aeronautics and Space Administration under Contract No. NASS-9312 and Grant Nos. NGR-05-002-160 and NGL 05-002-007. One of us (J.E.L.) has received valuable support from an NDEA Fellowship and a NASA Traineeship.

7. References.

Abramowitz, M., and I. A. Stegun 1964. <u>Handbook of Mathematical Functions</u>, (Dover), 538.

Althouse, W. E., E. C. Stone, R. E. Vogt, and T. H. Harrington 1967. IEEE Trans. Nuc. Sci. 15, 229.

Burlaga, L. F. 1967. J. Geophys. Res. 72, 17, 4449.

Fisk, L.A., and W. I. Axford 1968. J.Geophys.Res. 73, 4396.

Forman, M. A. 1970. J.Geophys.Res. <u>75</u>, 3147.

Forman, M. A. 1971. J. Geophys. Res. 76, 759.

Murray, S. S., E. C. Stone, and R. E. Vogt 1971. Phys.Rev.Letters 26, 663.

Parker, E. N. 1965. Planet. Space Sci. 13, 9.